Maximum-Entropy Method in the analysis of Charge Density I

- A Promising Tool for Charge Density Study -

Masaki Takata RIKEN SPring-8 Center

Outline

- 1. Information Entropy and Charge Density Analysis
- 2. MEM Charge Density Study by Diffraction Data
- 3. Charge Density Refinement by MEM

MEM/Rietveld Analysis etc.

- 4. Nuclear Density Study by MEM
- 5. Application

Information Theory (1948)

I just wondered how things were put together.

by Claude Shannon

American mathematician and electronic engineer known as "the father of information theory"

Information Entropy:

$$S = -\sum_{i} \rho_i \, \ell n \rho_i$$

as a measure for the uncertainty of information (data)

Ionic Valence investigation from MEM charge Density							
		BaTiO ₃		PbTiO ₃		PbZrO ₃	
		tetragonal	cubic	tetragonal	cubic	cubic	
	A: Pb, Ba	+1.9(3)	+1.8(3)	+1.1(3)	+2.0(3)	+1.2(4)	
	B: Ti, Zr	+1.9(4)	+2.1(4)	+2.4(4)	+2.2(3)	+2.7(5)	
	0(1)	-1.6(3)	-1.3(3)	-1.4(3)	-1.4(3)	-1.3(2)	
	O (2)	-1.1(3)	-	-1.0(3)	-	-	
P_s			a)		b) (2) (2) (3) (4) (5) (4) (5) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	PbTiO ₃ 300K :p = 0.2 e/Å ³	

