September 27, 2011

Cheiron School 2011

X-ray Beamline Design 1 - X-ray Monochromator -

Shunji Goto SPring-8/JASRI

Outline

- 1. Introduction
- 2. Light source
- 3. Monochromator

Fundamental of Bragg reflection DuMond diagram ~ extraction of x-rays from SR Double crystal monochromator Crystal cooling

- 4. Example of beamlines at SPring-8
- 5. Summary

Process of beamline construction

Beamline design is first step and crucial for success of the beamline !
 → Fundamental of X-ray beamline; light source, monochromator, mirror,...

Beamline structure

Beamline = "Bridge" between light source & experimental station

Light source

Ring tunnel

Exp. hall

→ Transport and processing of photons

photon energy, energy resolution,

beam size, beam divergence, polarization,...

→ Vacuum

protection of ring vacuum and beamline vacuum

→ Radiation safety

Shielding and interlock

Experimental

station

Shielding

hutch

Optics & transport

Monochromator, mirror shutter, slit

pump,..

Front-end

Light sources & X-ray optics

Check points to be considered for your application:

- White or monochromatic
- Energy range
- Energy resolution
- Flux & flux density
- Beam size at sample (micro beam?,...)
- Beam divergence/convergence at sample (Resolution in k-space)
- Higher order elimination w/ mirror
- Polarization conversion
- Spatial coherency

. . . .

 \rightarrow Light source, monochromator, mirror,

and other optical devices and components

BL classification (energy region)

BL classification (energy resolution)

Light sources (1)

Bending magnet or insertion devices ?

Bending magnet:

for wide energy range, continuous spectrum

for wide beam application for large samples

- Undulator (major part of 3GLS beamline):
- for high-brilliance beam
- for micro-/ nano-focusing beam

Wiggler:

for higher energy X-rays > 100 keV.

Power, brilliance, flux density, partial flux,... can be calculated using code.

e.g. "SPECTRA" by T. Tanaka & H. Kitamura

Brilliance for SPring-8 case

Light sources (2)

Angular divergence and band width → Core part we need

Bending magnet

$$\sigma_{r'} \approx 0.597 \frac{1}{\gamma} \sqrt{\frac{\lambda}{\lambda_c}}$$

Undulator

$$\sigma_{r'} \approx \sqrt{\frac{\lambda_n}{2N\lambda_u}} = \frac{1}{2\gamma} \sqrt{\frac{1+K^2/2}{nN}}$$

$$\frac{\Delta E}{E} \approx \frac{1}{n\Lambda}$$

Bending Megnet

SPring-8 in-vacuum undulator

Light sources (3)

SR power → mostly eliminated before/by monochromator

Monochromator

Key issues from experimental request:

White or monochromatic $? \rightarrow$ monochromatic

Energy region ← Bragg's law

Energy resolution ← Source divergence, Darwin width,...

Flux (throughput) \leftarrow related to energy resolution

Double-crystal monochromator for fixed-exit

Single-bounce monochromator is for limited case

Heat load ← depending on light source

Bragg reflection

Bragg's law in real space

- 1) Phase matching on the single net plane by mirror-reflection condition.
- 2) Phase matching between net planes.

Laue condition (Kinematical) in reciprocal space

$$\mathbf{Q} = \mathbf{K}_{s} - \mathbf{K}_{0} = \mathbf{h}$$

Reciprocal lattice vector h

- Normal to net plane
- Length = 1/d

Miller indices and *d*-spacing for silicon

13

Crystal structure factor for diamond structure

Structure facrtor → Sum of atomic scattering with phase shift in the unit cell

$$F(\mathbf{h}) = \sum_{j} f_{j}(\mathbf{h}, E) \exp(2\pi i \mathbf{h} \cdot \mathbf{r}_{j})$$

Atomic scattering factor
$$F(\mathbf{h}) = \sum_{j} f_{j}(\mathbf{h}, E) \exp\{2\pi i (hx_{j} + ky_{j} + lz_{j})\} z$$

For diamond structure

h, k, l Mixture of odd and even numbers F = 0

Position of atoms in the unit cell for diamond structure $(x_j, y_j, z_j) =$ $(0, 0, 0)_1, (1/4, 1/4, 1/4)_2,$ $(1/2, 1/2, 0)_3, (3/4, 3/4, 1/4)_4,$ $(0, 1/2, 1/2)_5, (1/4, 3/4, 3/4)_6,$ $(1/2, 0, 1/2)_7, (3/4, 1/4, 3/4)_8$

h, k, l All odd, or, all even numbers, and m: integer,

 $\begin{cases} h+k+l = 4m & F = 8f & \leftarrow 8 \text{ atoms in phase} \\ h+k+l = 4m \pm 1 & F = 4(1 \pm i)f & \leftarrow \text{Half contribute with phase shift } \pm \pi/2 \\ h+k+l = 4m \pm 2 & F = 0 & \leftarrow \text{Half cancel with } \pi \end{cases}$

х

Crystal structure factor for diamond structure

X-ray monochromator using perfect crystal

→ Perfect single crystal: silicon, diamond,...

e.g. for SPring-8 standard DCM

Bragg angle: 3~27°

Reflectivity (dynamical theory)

Darwin curve (intrinsic reflection curve for monochromatic plane wave) for Bragg case, no absorption, and thick crystal:

$$\begin{cases} R = \left(W + \sqrt{W^2 - 1}\right)^2 & (W < -1) \\ R = 1 & (-1 \le W \le 1) & \leftarrow \text{Total reflection region} \\ R = \left(W - \sqrt{W^2 - 1}\right)^2 & (W > 1) \end{cases}$$

W: deviation parameter for s-polarization, symmetrical Bragg case

Darwin curve

For Bragg case, no absorption, and thick crystal:

Reflectivity with absorption

Fourier component of polarizability for diamond structure

$$\chi_{h} = \chi_{h}' + \chi_{h}''$$

$$\begin{pmatrix} h+k+l = 4m \\ \chi_{h}' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 8(f^{0} + f')e^{-M} \\ \chi_{h}'' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 8f''e^{-M} \\ h+k+l = 4m \pm 1 \\ \chi_{h}' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 4(1+i)(f^{0} + f')e^{-M} \\ \chi_{h}'' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 4(1+i)f''e^{-M} \\ h=k=l=0 \\ \chi_{0}' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 8(Z + f') \\ \chi_{0}'' = -\frac{r_{e}\lambda^{2}}{\pi v_{c}} 8f''$$

Reflectivity

- symmetrical Bragg case,
- s-polarization,
- thick crystal

$$R = L - \sqrt{L^2 - 1}$$

$$L = \frac{\left\{W^{2} + g^{2} + \sqrt{\left(W^{2} - g^{2} - 1 + \kappa^{2}\right)^{2} + 4\left(gW - \kappa\right)^{2}}\right\}}{1 + \kappa^{2}}$$

$$W = \left(\Delta \theta \sin 2\theta_{\rm B} + 2\sin^2 \theta_{\rm B} \frac{\Delta E}{E} + \chi_0'\right) \frac{1}{|\chi_h'|}$$
$$g = \frac{\chi_0''}{|\chi_h'|}, \quad \kappa = \frac{|\chi_h''|}{|\chi_h'|}$$
19

Reflectivity curve for silicon

Peak ~1 with small absorption 20

DuMond (angle-energy) diagram

The diagram helps to understand how we can extract x-rays from SR source.

Source divergence and diffraction width

Natural divergence

- Bending magnet

$$\sigma_{r'} \approx 0.597 \frac{1}{\gamma} \sqrt{\frac{\lambda}{\lambda_c}} \propto \sqrt{\frac{1}{\hbar\omega}}$$

- Undulator

- Undulator (*N*= 140)

 $\sigma_{r'} \approx 5 \mu rad$ Divergence of undulator radiation ~ diffraction width

Energy resolution

For usual beamline : $\Delta E/E=10^{-5} \sim 10^{-3}$

23

DuMond diagram: undulator & DCM

Wider slit increases unused photons (power) on the monochromator !

Improvement of energy resolution

Photon flux after monochromator

Photon flux (throughput) after monochromator can be estimated using effective band width:

Photon flux (ph/s) =

Photon flux from light source (ph/s/0.1%bw)

x 1000

x Effective band width of monochromator

Throughput is estimated by overlapped area.

Note difference from energy resolution.

Effective band width

Starting with Darwin width in the energy axis

$$\frac{\Delta E}{E} \approx \frac{\left|\chi_{h}'\right|}{\sin^{2}\theta_{\mathrm{B}}}$$

$$\chi'_h \propto \lambda^2 \{f_0(d_{hkl}) + f'(\lambda)\}$$

Neglecting anomalous scattering factor f'

$$\chi_{h}' \propto \lambda^{2} f_{0}(d_{hkl})$$
$$\frac{\Delta E}{E} = -\frac{\Delta \lambda}{\lambda} \approx \frac{|\chi_{h}'|}{\sin^{2} \theta_{B}}$$
$$= 4d_{hkl}^{2} \frac{|\chi_{h}'|}{\lambda^{2}}$$

$$\frac{\Delta E}{E} = -\frac{\Delta \lambda}{\lambda} \propto d_{hkl}^{2} f_{0}(d_{hkl})$$

Independent of photon energy

e.g. for Si 111 refl. DCM case Note relative energy width is constant.

Effective band width (Integrated intensity)

Effective band-width is obtained

by integration of reflection curve.

When you need flux \rightarrow Lower order (Si 111 refl.,..) When you need resolution \rightarrow Higher order (Si 311, Si 511 refl,..)

Photon flux at undulator beamline

Higher harmonics elimination more \rightarrow mirror or detuning of DCM

We can obtain photon flux of $10^{13} \sim 10^{14}$ ph/s/100 mA/mm² using standard undulator sources and Si 111 reflections at SPring-8 beamlines.

Double-crystal monochromator

- Fixed-exit operation for usability at experimental station.
- Choose suitable mechanism for energy range (Bragg angle range).
- Precision, stability, rigidity,...

θ_1 + translation + θ_2 computer link

SPring-8 BL15XU

SPring-8 information Vol. 5, No.1 (2000)

 $h=100 \text{ mm}, \theta_{B}=5.7 \sim 72^{\circ}$ (for lower energy range)

Large offset, long-stroke translation

Difficulty of adjustment between 1st and 2nd crystal

θ + two translation (KEK-PF)

h=25 mm, $\theta_{\rm B}=5\sim70^{\circ}$

Two cams for two translation-stages Rotation center at 2nd crystal

PF BL-4C..

Matsushita et al., NIM A246 (1986)

SPring-8 standard DCM

Offset h=30 mm $\theta_{\rm B}=3\sim27^{\circ}$ for higher energy range

Yabashi et al., Proc. SPIE 3773, 2 (1999)

High-precision adjustment stages for undulator beamline DCM Sub-µm & sub-µrad control 33

Crystal cooling

Why crystal cooling?

Qin (Heat load by SR) = Qout (Cooling + Radiation,..)

- \rightarrow with temperature rise ΔT
- $\rightarrow \alpha \Delta T = \Delta d$ (*d*-spacing change)

 α : thermal expansion coefficient

or $\rightarrow \varDelta \theta$ (bump of lattice due to heat load)

Miss-matching between 1st and 2nd crystals occurs:

 \rightarrow Thermal drift, Loss of intensity, Broadening of beam, loss of brightness

 \rightarrow Melting or limit of thermal strain \rightarrow Broken !

Solution for crystal cooling

We must consider:

Thermal expansion of crystal: α , Thermal conductivity in crystal: κ , Heat transfer to coolant and crystal holder.

Solutions:

(S-1) κ/α → Larger
(S-2) Large contact area between crystal and coolant/holder
→ larger

(S-3) Irradiation area \rightarrow Larger, and power density \rightarrow smaller

Figure of merit

	Silicon 300 K	Silicon 80 K	Diamond 300 K
<i>₭</i> (W/m/K)	150	1000	2000
<i>α</i> ′ (1/K)	2.5x10 ⁻⁶	-5x10 ⁻⁷	1x10 ⁻⁶
κ / α x10 ⁶	60	2000	2000

Figure of merit of cooling: Good for silicon (80 k) and diamond (300 K)

For SPring-8 case

Bending magnet beamline

Power and density : ~100 W, ~1 W/mm² @40 m Method:

 \rightarrow Direct cooling with fin crystal

← S-2

Undulator beamline

(Linear undulator, N= 140, $\lambda u= 32$ mm) Power and density : ~500 W , ~500 W/mm² @40 m Methods:

 \rightarrow Direct cooling of silicon pin-post crystal \leftarrow S-2

- + Rotated inclined geometry (\rightarrow 10 W/mm²) \leftarrow S-3
- \rightarrow or Cryogenic cooling using LN₂ circulation \leftarrow S-1
- \rightarrow or Indirect cooling of IIa diamond crystal \leftarrow S-1

Crystal monochromator at SPring-8

<Bending magnet beamline>

Power & power density: ~100 W, ~1 W/mm²

Fin crystal direct-cooling - (S2)

<Undulator beamline>

Linear undulator, N= 140, $\lambda u=$ 32 mm Power & power density: 300~500 W, 300~500 W/mm²

b) Silicon cryogenic cooling - (S1)

a) Direct cooling of silicon pin-post crystal – (S2) & (S3)

c) Ila diamond with indirect water cooling - (S1)

O-ring

Example of x-ray beamline - SPring-8 case -

XAFS & single crystal diffraction

- Bending magnet
- Collimator mirror, + DCM,
- + refocusing mirror

Protein crystallography

High resolution inelastic scattering

- Undulator
- DCM + back-reflection monochromator & analyzer (w/ ~meV resolution)

200-m-long beamline

Bending magnetDCM

300-mm-wide beam at end-station

Summary

- Starting point of X-ray beamline design is shown here, w/ light source and **monochromator**.
- It helps to figure out what we can do at the beamline.

- We will have to go into details of design refinement using; FEA (ANSYS), ray-tracing (SHADOW,...).
- Ray-tracing \rightarrow wave simulation for "diffraction limited source and optics"