Light Source I

Takashi TANAKA (RIKEN SPring-8 Center)

CONTENTS

- Light Source [
 Fundamentals of Light and SR
 - Overview of SR Light Source
 Characteristics of SR (1)

- Light Source II
 Characteristics of SR (2)
 Practical Knowledge on SR

Introduction

SR Facility and Light Source

- SR: Definition
 - Electromagnetic wave emitted by a charged particle deflected by a magnetic force
- SR Facility
 - Accelerators to generate a high-energy electron beam
 - Magnetic devices (SR light source) to generate intense SR
 - Optical elements (monochromators, mirrors,..)
 - Experimental stations

SR as a Probe for Research

- SR has a lot of advantages over other conventional light sources
 - Highly collimated (laser-like)
 - Wavelength tunability
 - Polarization

.

• However, the total radiation power does not differ significantly.

Comprehensive understanding of SR (and light source) is required for efficient experiments.

Topics in This Lecture (1)

- Fundamentals of Light and SR
 - Why we need SR?
 - Physical quantity of light
 - Uncertainty of light: Fourier and diffraction limits
 - SR: Light from a moving electron
- Overview of SR Light Source
 - Types of light sources
 - Magnet configuration
- Characteristics of SR (1)
 - Radiation from bending magnets

Topics in This Lecture (2)

- Characteristics of SR (2)
 - Electron Trajectory in IDs
 - Radiation from wigglers
 - Radiation from undulators
- Practical Knowledge on SR
 - Finite emittance and energy spread
 - Heat load and photon flux
 - Evaluation of optical properties of SR
 - Definition of undulators and wigglers
 - Numerical examples

Fundamentals of Light and SR

- Why we need SR?
- Physical Quantity of Light
- Uncertainty of Light
- SR: Light from a Moving Electron

Observation with Light

Which Quality is Better?

How to Define the Quality of Light?(1)

- The performance of the light source depends on the dimension of the object and the method to detect light.
- For observation, the photons emitted by the light source should be
 - illuminated on the object for interaction

-recognized by the detector for analysis

Quality of Light Source: How efficiently the above conditions are satisfied?

How to Define the Quality of Light?(2)

Important Features of the Light Source

	Object		Related Items		
	Flower	Protein			
Radiation Power	\bigcirc	0	# Emitted Photons		
Source Size	×	0	Illuminated Area		
Directivity	Δ	0			
Monochromaticity	Δ		Accuracy of Analysis		

Brilliance

What is Brilliance?

Brilliance(photons/sec/mm²/mrad²/0.1%B.W.) Total Power

Source Size x Angular Divergence x Band Width

- Brilliance specifies the quality of light for observation of microscopic objects.
- The brilliance of a light source with a high total power is not necessarily high.

Examples of Brilliance

	Bulb	Laser Pointer	
Total Power (W)	100	10 ⁻³	
Angular Div. (mrad ²)	4π x10 ⁶	1	
Source Size: (mm ²)	10 ²	1	
Bandwidth: (%)	100	0.01	
Brilliance	~10 ⁸	~10 ¹⁶	
(photons/sec/)			

Laser is the best light source to observe the microscopic object!

X ray as a Probe

- Definition (not unique)
 - Electromagnetic wave (= light) with λ of 10 nm(10⁻⁸ m) ~ 0.1 Å (10⁻¹¹ m)
- Properties
 - High Energy/Photon
 - High Penetration (Roentgen etc..)
- Application to Microscopic Objects
 - X-ray Diffraction
 - Fluorescent X-ray Analysis
- No Practical Lasers!!

Synchrotron Radation(SR)

Fundamentals of Light and SR

- Why we need SR?
- Physical Quantity of Light
- Uncertainty of Light
- SR: Light from a Moving Electron

Physical Quantity of Light

Phase Space

Brilliance (Brightness)

 Brilliance (photons/sec/mm²/mrad²/0.1%B.W.) is defined as the photon density in the 6D phase space, i.e.,

$$B = \lim_{\Delta\Omega\to 0} n = \frac{d^6 N(x, y, x', y', t, \omega)}{dx dy dx' dy' dt d\omega/\omega}$$

 In practice, ΔΩ can never be 0 due to uncertainty of light, thus brilliance is not a physical quantity that can be actually measured.

Photon Flux and Flux Density

 Removing the 1st slit gives the angular flux density (photons/sec/mrad²/0.1%B.W), i.e.,

$$\frac{d^2F}{dx'dy'} = \iint Bdxdy$$

 Removing the 1st & 2nd slits gives the total flux (photons/sec/0.1%B.W), i.e.,

$$F = \iiint B dx dy dx' dy'$$

• Estimation of number of photons to be delivered to the sample.

Radiation Power and Power Density

 Removing the 1st & 3rd slits gives the angular power density (W/mrad²), i.e.,

$$\frac{d^2 P}{dx' dy'} = 10^3 Q_e \hbar \int \frac{d^2 F}{dx' dy'} d\omega$$

conversion from photons/sec/0.1%B.W. to W

 Removing all the slits gives the total power (W), i.e.,

$$P = 10^{3} Q_{e} \hbar \iiint \frac{d^{2} F}{dx' dy'} d\omega dx' dy'$$

• Estimation of heat load on BL components.

Photons in 4D Phase Space

• Photon distribution in the 4-D phase space at different longitudinal positions.

Beam Size, Divergence, Emittance

- Beam size $(\sigma_{x,y})$ is defined as the beam envelope at the beam waist position.
- Angular divergence $(\sigma_{x',y'})$ is constant along the axis of propagation, as far as no optical elements are present.
- Emittance (ε_x,ε_y) is defined as σ_{x,y} X σ_{x',y'}, which is equal to the area of the phase ellipse divided by π.

Fundamentals of Light and SR

- Why we need SR?
- Physical Quantity of Light
- Uncertainty of Light
- SR: Light from a Moving Electron

Uncertainty of Light

- The photon distribution in the 6D phase space (x,y,x',y',t,\overline) gives us the full information on the properties of SR.
- Due to wave nature of light, however, we have two uncertainty relations to take care, which are well characterized by the Fourier transform.
- These relations imposes two restrictions on SR, Fourier and Diffraction limits.

Fourier Transform: Example

Important Fourier Transform in SR Formulae

Temporal Fourier Transform

Fourier Limit of Light

Temporal Fourier transform imposes

 $\Delta \omega \Delta t \geq \text{const.}$

- Uncertainty of light in the (ω,t) plane.
- When equality holds, light is said to be
 - Fourier-limited
 - Temporally coherent
- Important to understand the spectral properties of SR.

Uncertainty of Light

Spatial Fourier Transform

Diffraction Limit of Light

- Spatial Fourier transform imposes $\Delta x \Delta k_x \ge \text{const.}$ $k_x=(2\pi/\lambda)x' \longrightarrow \Delta x \Delta x' \ge \lambda \times \text{const.}$
- Uncertainty of light in (x,x') plane
- When equality holds, light is said to be
 - Diffraction limited
 - Spatially coherent
- In the case of Gaussian beam,

$$\sigma_x \sigma_{x'} \geq \lambda/(4\pi)$$
 Natural emittance
of light

Fundamentals of Light and SR

- Why we need SR?
- Physical Quantity of Light
- Uncertainty of Light
- SR: Light from a Moving Electron

SR: Light from a Moving Electron

- Unlike the ordinary light source (sun, light bulb,...), the light emitter of SR (electron) is ultra-relativistic.
- The characteristics of SR is thus quite different due to relativistic effects.
- What we have to take care is:
 - 1. Speed-of-light limit
 - 2. Squeezing of light pulse
 - 3. Conversion of the emission angles

Speed-of-Light Limit

Within the framework of relativity, the velocity of an electron never exceeds the speed of light.

$w/c = \beta$	_	$\sqrt{1 - \gamma^{-2}}$	Energy	β
c/c = p	_	V ± / 1	1MeV	0.941
	\sim	$1 - \frac{1}{2}$	10MeV	0.9988
		$-2\gamma^2$	100MeV	0.999987
E			8GeV	0.999999998
$\gamma = \frac{1}{mc^2}$				

:Lorentz Factor

(relative electron energy,mc²=0.511MeV)

Light from a Moving Electron

Squeezing of Light Pulse Duration

$$R_{2} = \sqrt{(R_{1})^{2} + (v\Delta t)^{2} - 2R_{1}v\Delta t\cos\theta}$$

$$\sim R_{1} - (v \cdot n)\Delta t$$

$$\Delta \tau = t_{2} - t_{1} = \Delta t + R_{2}/c - R_{1}/c$$

$$= \Delta t \left[(1 - \beta \cdot n) \right] = \left[\frac{\Delta t}{2\gamma^{2}} \right] \gamma > 1, \theta = 0$$
time squeezing

Conversion of Emission Angles

Light emitted from a moving object (β ~1) concentrates within γ^{-1}

SR from a High-Energy Electron

Overview of SR Light Source

What is SR Light Source?

Bending Magnet

- One of the accelerator components in the storage ring.
- Generate uniform field to guide the electron beam into a circular orbit.
- EMs combined with highly-stable power supplies are adopted in most BMs due to stringent requirement on field quality and stability.
- Superconducting magnets are used in a few facilities in pursuit of harder x rays.

Insertion Device

- Installed (inserted) into the straight section of the storage ring between two adjacent BMs.
- Generate a periodic magnetic field to let the injected electron beam move along a periodic trajectory.
- Most IDs are composed of PMs, while EMs are used for special use such as helicity switching.
- Classified into wigglers and undulators.

Overview of SR Light Source

Magnetic Circuit of IDs

In each type, a sinusoidal magnetic field is obtained:

$$B_y(z) \sim B_0(B_r, g/\lambda_u) \sin\left(\frac{2\pi z}{\lambda_u}\right)$$

Example of ID Magnets

Halbach-type Magnet Array for SPring-8 Standard Undulators

Example of SR Image

BL47XU@SP-8, first image of SR with a fluorescent screen (<0.1mA)

Undulator Gap = 50 mm

Undulator Gap = 20 mm

Comparison of Light Sources

Characteristics of SR (1)

Radiation from BMs

Directivity of BM Radiation

Radiation from BMs

Spectrum of BM Radiation (1)

Radiation from BMs

Spectrum of BM Radiation (2)

Spectrum of BM Radiation (3)

- By definition, ω_c=(3/2)/∆τ=3γ³c/2ρ is called "critical frequency" of SR, which gives a criterion of the maximum energy of SR from a BM.
- In practical units,

 $\hbar\omega_{c}(keV)=0.665E_{e}^{2}(GeV)B(T)$

Example of Spectrum

Cheiron 2011: Light Source I

Angular Profile of BM Radiation

- power profile ~ flux profile@ $\omega/\omega_c=1$
- larger angular divergence for lower energy

Polarization of BM Radiation

