

Technique	Comment	Energy Scale	Information
X-Ray Raman	(E)XAFS in Special Cases	E _{in} ~10 keV ΔE~100-1000 eV	Edge Structure, Bonding
Compton	Oldest Note: Resolution Limited	E _{in} ~ 150 keV ΔE ~ keV	Electron Momentum Densil Fermi Surface Shape
Magnetic Compton	Weak But Possible	E _{in} ~ 150 keV ΔE ~ keV	Density of Unpaired Spins
RIXS Resonant IXS	High Rate Somewhat Complicated	E _{in} ~ 4-15 keV ΔE ~ 1-50 eV	Electronic Structure
NRIXS Non-Resonant IXS	Low Rate Simpler	E _{in} ~10 keV ΔE ~ <1-50 eV	Electronic Structure
IXS High-Resolution IXS	Large Instrument	E _{in} ~16-26 keV ΔE ~ 1-100 meV	Phonon Dispersion
NIS Nuclear IXS	Atom Specific Via Mossbauer Nuclei	E _{in} ~ 14-25 keV ΔE ~ 1-100 meV	Element Specific Phonon Density of States

Some References

 Shulke, W. (2007), Electron Dynamics by Inelastic X-Ray Scattering. New York: Oxford University Press.
 & References therein (RIXS, X-Ray Raman, NRIXS...)

Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron Scattering. New York: Dover Publications, Inc.

van Hove, L. (1954). Phys. Rev. 95, 249-262.

Born, M. & Huang, K. (1954). Dynamical Theory of Crystal Lattices. Oxford: Clarendon press.

Bruesch, P. (1982). Phonons: Theory and Experiments, Springer-Verlag.

Cooper, M.J. (1985). Rep. Prog. Phys. 48 415-481

5Pring. Spectroscopy Absorption vs. Scattering יו=אוא SOUTH ALLINE BROOMPOSITE TTY ALLINE DECOMPOSITE Measure absorption as you Absorption scan the incident energy Spectroscopy When energy hits a resonance, or exceeds a gap, or... get a change Optical, IR, NMR Free Parameters: E₁, e₁, k₁ Optical Spect. NiO Newman, PR 1959 -> In principle, 3+ dimensions but in practice mostly $1 (E_1)$ Scattering Spectroscopy $E_2 k_2 e_2$ $E_1 \mathbf{k}_1 \mathbf{e}_1$ IXS, Raman, INS Free Parameters: E_1 , e_1 , k_1 , E_2 , e_2 , k_2 -> In principle, 6+ dimensions in practice, mostly 4: $E_1 - E_2$, Q = $k_2 - k_1$ Scattering is more complex, but gives more information.

Note: Fluctuation Dissipation Theorem

AQRB @ AOFSRR Cheiron School 2011

5Prina.

Pring.
Dynamic Structure Factor
This convenient, especially for non-resonant scattering, to separate the properties of the material and the properties of the interaction of the photon with the material (electron)

$$I_{scattered}(\mathbf{Q}, \omega) \propto \frac{d^2\sigma}{d\Omega d\omega} = r_e^2 \left(e_2^* \cdot e_1\right)^2 \frac{\omega_2}{\omega_1} S(\mathbf{Q}, \omega)$$

$$\sigma_{Thom son} = r_e^2 \left(e_2^* \cdot e_1\right)^2$$

$$S(\mathbf{Q}, \omega)$$

$$S(\mathbf{Q}, \omega)$$
Dynamic Structure Factor
"The Science"

Atomic Dynamics: Systems and Questions

Disordered Materials (Liquids & Glasses):

- Still a new field -> Nearly all new data is interesting.
 - How do dynamical modes survive the cross-over from the long-wavelength continuum/hydrodynamic regime to atomic length scales?

Crystalline Materials:

RIKEN

Basic phonon model does very well -> Specific questions needed. Phonon softening & Phase transitions (e.g. CDW Transition) Thermal Properties: Thermoelectricity & Clathrates Sound Velocity in Geological Conditions Pairing mechanism in superconductors

If a crystal has N unit cells and R atoms/Cell then it has 3NR Normal Modes

Generally: Consider the unit cell periodicity separately by introducing a continuous momentum variable, **q**.

-> 3R modes for any given **q**

AQRB @ AOFSRR Cheiron School 2011

RIKEN			Materia	ls	SPring. 8
		<i>R</i> FeAsO "1111"	AFe ₂ As ₂ "122"	AFeAs "111"	FePn "11"
		<i>R</i> =La,Ce,Pr,	A=Ba,Sr,Ca	A=Li,Na	Pn=Se,Te,S
		Nd,Sm,Eu,Gd,Tb,Dy	K,Cs,Na		
	T_N [K]	127~141	140, 220, 173	160 - = : CeF	-eAsO _{1-x} F _x
	T_s [K]	150~155	140, 220, 173		$T_{\rm N} ({\rm Fe}) \xrightarrow{\Sigma_{\rm O}} 0.4 \left \begin{array}{c} \bullet \\ \bullet \end{array} \right $
	T_c [K]	28, 55	25, 37	120 -	$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
*	T_R [K]	2~14	-	(¥)	T _s (P4/nmm to Cmma) x
	$m \left[\mu_B ight]$	$0.36{\sim}0.9$	0.8~1.0		, Zhao, Nmat
	Ref.	Y.Kamihara et al.	M.Rotter et al.	40 AFM	
		JACS 130,3296	PRL 101,107006	3 · · · · · · · · · · · · · · · · · · ·	sc sc
		Z-A.Ren et al.		0	
		CPL 25,2215		0 0.04 0.0	08 0.12 0.16 0.20
				AQRB	AOFSRR Cheiron School 2011

QRB @ AOFSRR Cheiron School 2011

Different Models:

AQRB @ AOFSRR Cheiron School 2011

	NUCIEAR INEIASTIC SCATTERING First Demonstrated (Clearly) by Seto et al 1995 Mössbauer Resonances Exist in Different Nuclei					
Isotope	Transition energy (keV)	Lifetime (ns)	Alpha	Natural abundance (%)		
¹⁸¹ Ta	6.21	8730	71	100		
¹⁶⁹ Tm	8.41	5.8	220	100		
⁸³ Kr	9.40	212	20	11.5		
⁵⁷ Fe	14.4	141	8.2	2.2		
¹⁵¹ Eu	21.6	13.7	29	48		
¹⁴⁹ Sm	22.5	10.4	~ 12	14		
¹¹⁹ Sn	23.9	25.6	~ 5.2	8.6		
1.61	05 (10	2.5	10		

R

Resonances have relatively long lifetimes so that if one has a pulsed source, one can separate the nuclear scattering by using a fast time resolving detector.

Nuclear Scattering

