
October 2, 2011: Cheiron School 2011 @ SPring-8

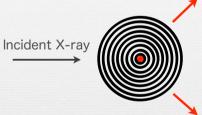
Small-Angle X-ray Scattering Basics & Applications

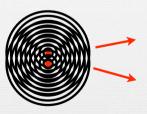
Yoshiyuki Amemiya and Yuya Shinohara Graduate School of Frontier Sciences, The University of Tokyo

What's Small-Angle X-ray Scattering?

Bragg's law: $\lambda = 2d \sin \theta$

small angle large structure


crystalline sample --> small-angle X-ray diffraction: SAXD solution scattering / inhomogeneous structure --> SAXS


Table of Contents

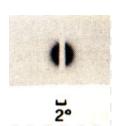
- Introduction
 - What's SAXS?
 - History
- Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

2

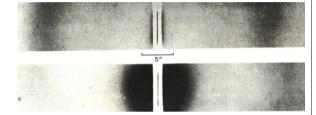
Interference of secondary waves

Each electron in marerials vibrates and emits secondary spherical wave

When there are two electrons,


- · interference between secondary waves from electrons
- when a distance between electrons is small
 - --> scattering at large angle is intensified
- · when a distance between electrons is large
 - --> scattering at small angle is intensified --> SAXS

History of SAXS (< 1936)


Krishnamurty (1930) Hendricks (1932) Mark (1932)

Observation of scattering from powders, fibers, and colloidal dispersions

carbon black

Warren (1936)

Molten silica - silica gel

courtesy to Dr. I.L.Torriani 5

History (> 1936)

A. Guinier (1937, 1939, 1943)

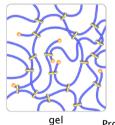
Interpretation of inhomogeneities in Al alloys "G-P zones", introducing the concept of "particle scattering" and formalism necessary to solve the problem of a diluted system of particles.

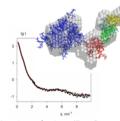
O. Kratky (1938, 1942, 1962)

G. Porod (1942, 1960, 1961)

Description of dense systems of colloidal particles, micelles, and fibers.

Macromolecules in solution.

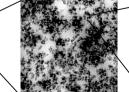


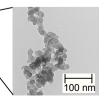

Hemoglobin

Single crystals of Al-Cu hardened alloy

courtesy to Dr. I.L.Torriani

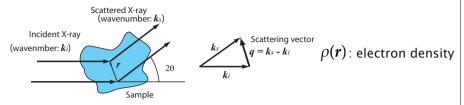
Application of SAXS





Typical SAXS image

Proteins in solution (Dr. Svergun, EMBL)



Nanocomposite

Table of Contents

- Introduction
 - What's SAXS?
 - History
- ◆ Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

Basic of X-ray scattering

 $q = |\mathbf{q}| = 4\pi \sin \theta / \lambda$

Amplitude of scattered X-ray

$$A(q) = \int_{V} \rho(r) \exp(-iq \cdot r) dr$$

Fourier transform of electron density

Scattering intensity per unit volume:
$$I(q) = \frac{A(q)A^*(q)}{V}$$

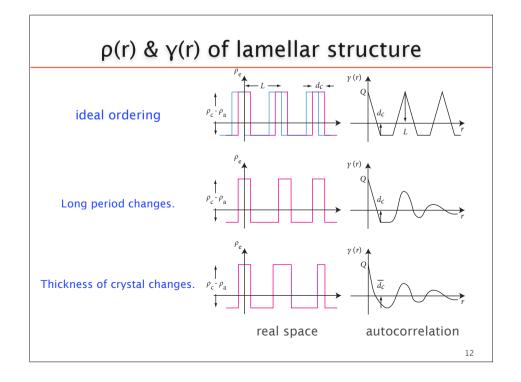
Intensive variables don't depend on the system size (volume). Extensive variables depend on the system size (volume).

Autocorrelation Function & Scattering Intensity

Autocorrelation function of electron density per unit volume

$$\gamma(\mathbf{r}) = \frac{1}{V} \int_{V} \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}' = \frac{1}{V} \frac{P(\mathbf{r})}{\text{Patterson Function}}$$
(Debye & Bueche 1949)

11


asymptotic behavior of the autocorrelation function

$$\gamma(0) = \langle \rho^2 \rangle$$
 $\gamma(\infty) = \langle \rho \rangle^2$

Scattering Intensity: Fourier Transform of autocorrelation function

$$I(q) = \int_{V} \overline{\gamma(r)} \exp(-iq \cdot r) dr$$

Real space and Reciprocal Space **Real Space Reciprocal Space** Fourier Trans. **Electron Density** Scattering amplitude A(q) $\rho(r)$ Autocorrelation Inv. Fourier Trans. I(q) $\gamma(r)$ Autocorrelation Scattering Intensity **Function** = Patterson Function per volume

Normalized Autocorrelation Function:

Introducing the relative electron density, $\eta(r)$, as

$$\eta(\mathbf{r}) = \rho(\mathbf{r}) - \langle \rho \rangle$$
 $\longrightarrow \langle \eta^2 \rangle = \langle (\rho(\mathbf{r}) - \langle \rho \rangle)^2 \rangle = \langle \rho^2 \rangle - \langle \rho \rangle^2$

Introducing the normalized autocorrelation function, $\gamma_0(r)$, as

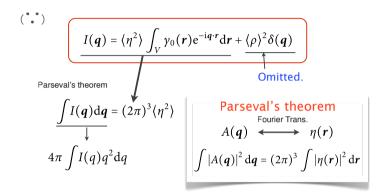
$$\langle \eta^2 \rangle \gamma_0(\mathbf{r}) = \frac{1}{V} \int_V \eta(\mathbf{r'}) \eta(\mathbf{r} + \mathbf{r'}) d\mathbf{r'}$$

then,
$$\gamma_0(\mathbf{r}) = \frac{\gamma(\mathbf{r}) - \langle \rho \rangle^2}{\langle \eta^2 \rangle}$$
 where $\gamma_0(0) = 1$ $\gamma_0(\infty) = 0$

$$I(\mathbf{q}) = \langle \eta^2 \rangle \int_V \gamma_0(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} + \langle \rho \rangle^2 \delta(\mathbf{q})$$

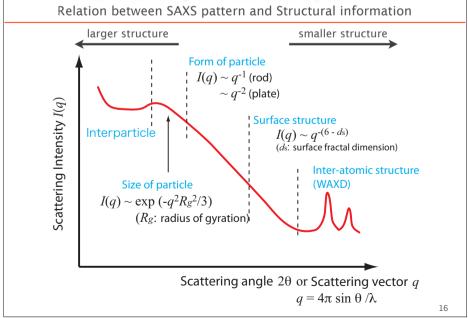
The average density fluctuations determine the magnitude of I(q). The normalized autocorrelation function $\gamma_0(r)$ determines the shape of I(q).

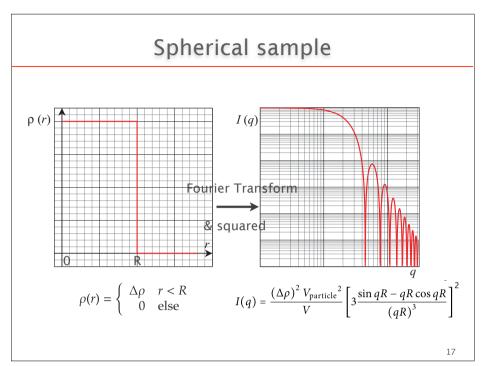
Not observable.

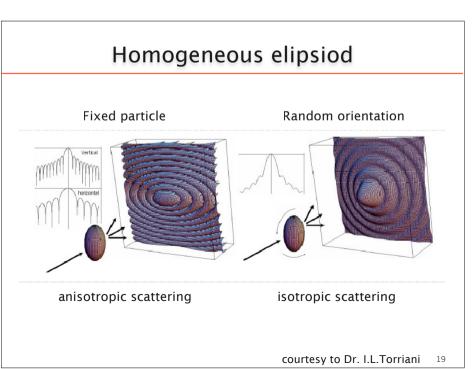

13

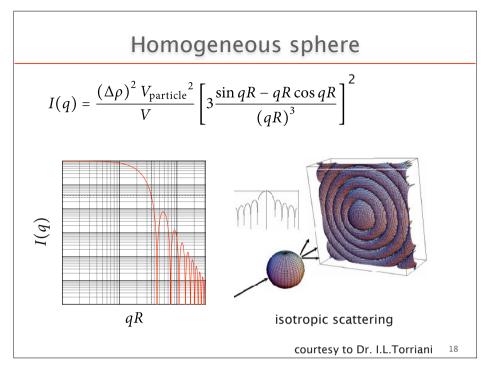
Information obtained from SAXS

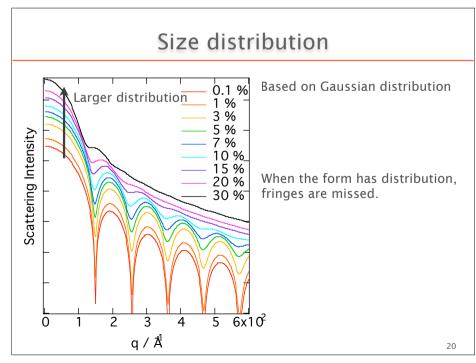
- 1. Size and form of particulate system
 - Colloids, Globular proteins, etc...
- 2. Correlation length of inhomogeneous structure
 - Polymer chain, two-phase system etc.
- 3. Lattice parameters of distorted crystals (para-crystal)
- 4. Degree of crystallinity, crystal size, crystal distortion
 - Crystalline polymer

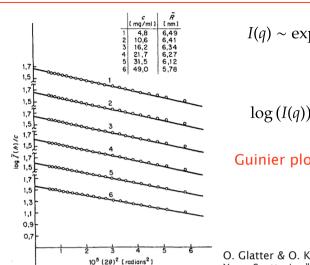

Invariant Q


Invariant:
$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \langle \eta^2 \rangle$$
doesn't depend on the structure



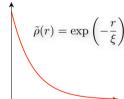

14

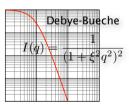

SAXS of particulate system



Radius of Gyration -- Guinier Plot

 $I(q) \sim \exp\left(-\frac{q^2 R_g^2}{3}\right)^2$


Guinier plot: $log(I(q)) vs q^2$

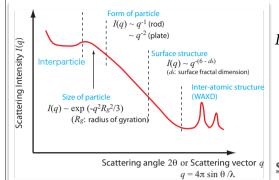

O. Glatter & O. Kratky ed., "Small Angle X-ray Scattering", Academic Press (1982).

Scattering from Inhomogeneous Structure

Electron Density

Autocorrelation Function Scattering Intensity

two phase system Autocorrelation



 $\tilde{\rho}(r) = \frac{\xi}{r} \exp\left(-\frac{r}{\xi}\right)$

23

Structure Factor & Form Factor

 $I(q) = \phi V_{\text{particle}} S(q) F(q)$ Structure Factor Form Factor

intra-particle structure inter-particle structure

Separation of S(q) & F(q)

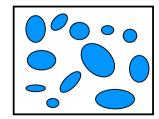
Everlasting issue (especially, for non-crystalline sample)

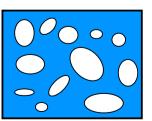
Proposed remedy:

· GIFT (Generalized Inverse Fourier Trans.) by O. Glatter

22

Two-phase system


Phase 1: ρ_1 , volume fraction ϕ Phase 2: ρ_2 volume fraction 1 - ϕ


$$A(\boldsymbol{q}) = \int_{\phi V} \rho_{1} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \int_{(1-\phi)V} \rho_{2} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$= \int_{\phi V} (\rho_{1} - \rho_{2}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \int_{V} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$A(\boldsymbol{q}) = \int_{V} \Delta \rho e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \delta(\boldsymbol{q})$$

$$A(\mathbf{q}) = \int_{V} \Delta \rho \, \mathrm{e}^{-\mathrm{i}\mathbf{q}\cdot\mathbf{r}} \mathrm{d}\mathbf{r} + \rho_{2}\delta(\mathbf{q})$$

Babinet's principle

Two complementary structures produce the same scattering

Two-phase system -- cont.

Averaged square fluctuation of electron density

$$\langle \eta^2 \rangle = \phi (1 - \phi) (\Delta \rho)^2$$
 where $\Delta \rho = \rho_1 - \rho_2$

$$\Delta \rho = \rho_1 - \rho_2$$

Φ: volume fraction

$$I(q) = 4\pi \langle \eta^2 \rangle \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$I(q) = 4\pi\phi(1-\phi)(\Delta\rho)^2 \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \phi (1 - \phi)(\Delta \rho)^2$$

Invariant: does not depend on the structure of the two phases but only on the volume fractions and the contrast between the two phases.

25

27

Pair Distance Distribution Function: PDDF

Scattering intensity: $I(q) = 4\pi \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{ar} r^2 dr$ (when isotropic)

PDDF: $p(r) = r^2 \gamma_0(r)$

the set of distances joining the volume elements within a particle. including the case of non-uniform density distribution.

Particle's SHAPE and maximum DIMENSION.

pairs of volume elements i-j

 D_{max}

histogram of all intra-particle distances

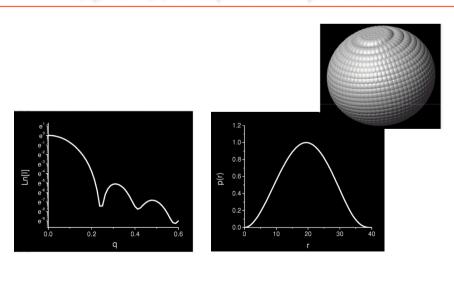
$$I(q) = 4\pi \int_0^\infty p(r) \frac{\sin(qr)}{qr} dr$$

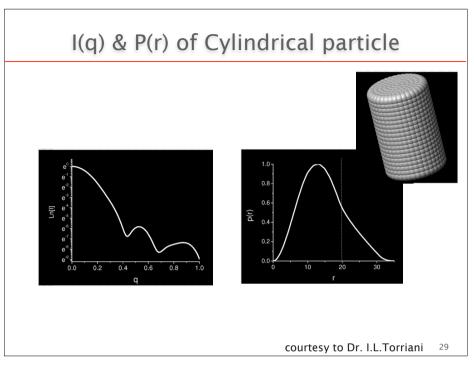
Porod's law

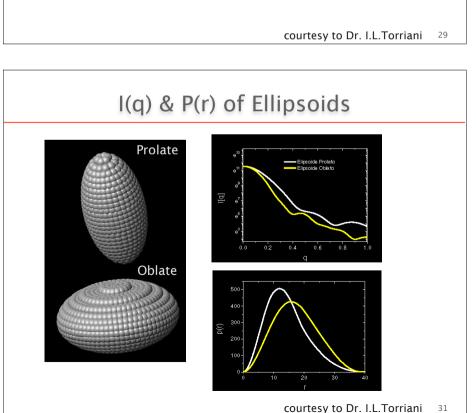
For a sharp interface, the scattered intensity decreases as Q^{-4} .

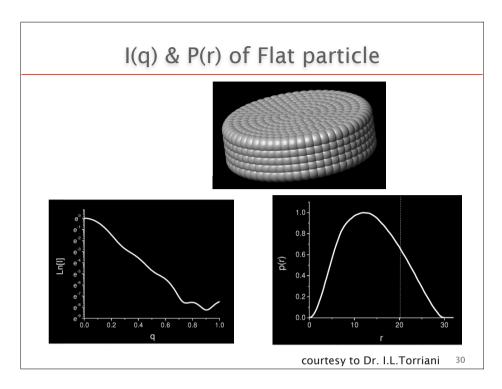
$$I(q) \rightarrow (\Delta \rho)^2 \frac{2\pi}{q^4} \underline{S/V}$$
 internal surface area

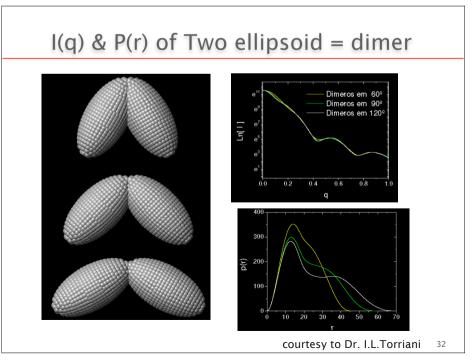
Combination of Porod's law & Invariant Q

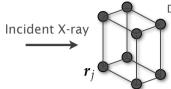

$$\pi \cdot \frac{\lim_{q \to \infty} I(q)q^4}{Q} = \boxed{\frac{S}{V}}$$


surface-volume ratio


important for the characterization of porous materials


26

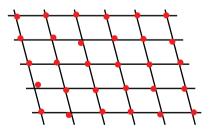

I(q) & P(r) of Spherical particle

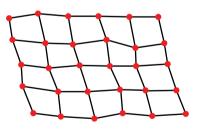


Diffraction from Periodic Structure

Diffraction from Unit cell (Crystalline structure factor)

$$F(q) = \sum_{j} f(q) \exp(-iq \cdot r_{j})$$


f(q): Atomic Form Factor


Diffraction Intensity: $I(q) \sim |G(q)|^2 |F(q)|^2$

Laue function:
$$|G(q)|^2 = \frac{\sin^2(\pi Nq \cdot r)}{\sin^2(\pi q \cdot r)}$$

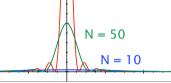
- Maximum ~ N²
- \sim FWHM $\sim 2\pi/N$
 - FWHM --> Size of crystal

Imperfection of crystal (2D)

Imperfection of 1st kind

Thermal fluctuation etc.

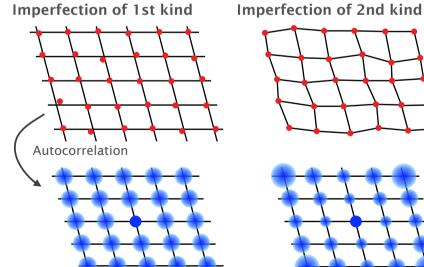
Imperfection of 2nd kind

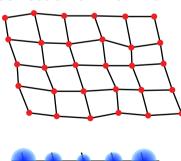

in the case of soft matter

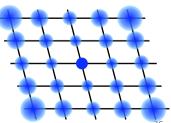
Laue Function

Laue function: $|G(q)|^2 = \frac{\sin^2(\pi N q \cdot r)}{\sin^2(\pi q \cdot r)}$

- Large crystal
 - High diffraction intensity
 - Narrow FWHM
- Soft matter (crystal size: small)
 - Low diffraction intensity
 - Wide FWHM

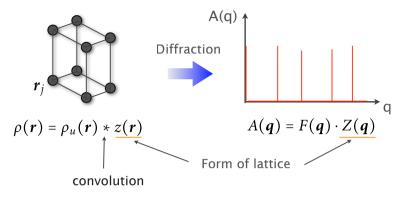

→ low S/N




N = 100

Crystal size --> Intensity & FWHM of diffraction

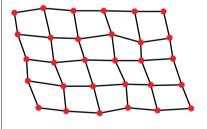
Imperfection of crystal


Imperfection of lattice (1D)

Effect of imperfections on diffraction ?

37

39


Diffraction from lattice-structure

z(r) with imperfection ---> calculate Z(q)

38

Imperfection of 2nd kind

Paracrystal theory

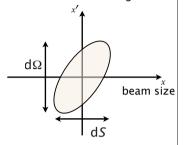
$$|Z(q)|^2 = N \left[1 + \frac{P(q)}{1 - P(q)} + \frac{P^*(q)}{1 - P^*(q)} \right]$$

Decrease of diffraction intensity and Increase of FWHM

R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland, Amsterdam (1962).

Table of Contents

- Introduction
 - What's SAXS?
 - History
- → Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

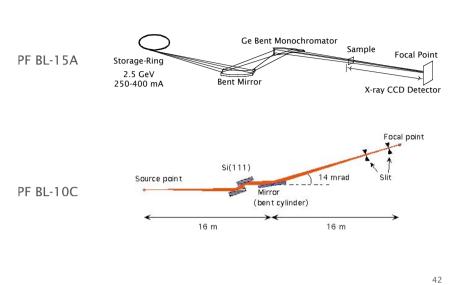

-

X-ray Source for SAXS

Emittance -- Product of size and divergence of beam beam divergence

Brilliance =
$$\frac{d^4N}{dt \cdot d\Omega \cdot dS \cdot d\lambda/\lambda}$$

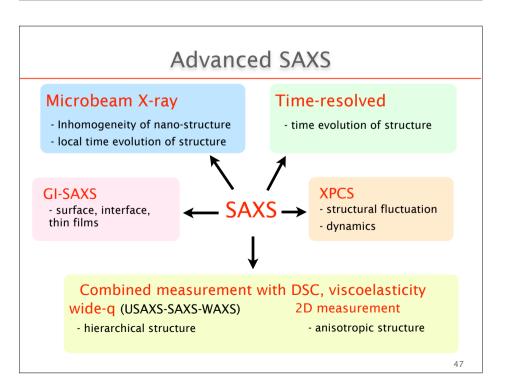
 $[photons/(s \cdot mrad^2 \cdot mm^2 \cdot 0.1\% \ rel.bandwidth)]$


SAXS needs to use a low divergence and small beam

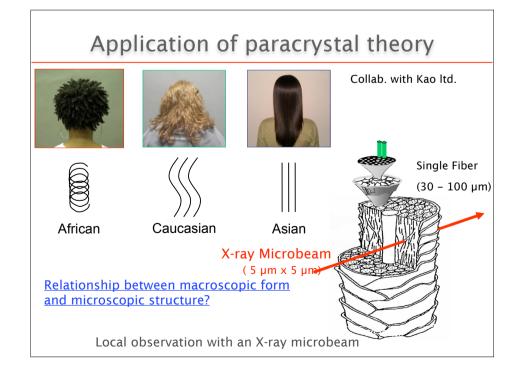
→ High brilliance beam is required!

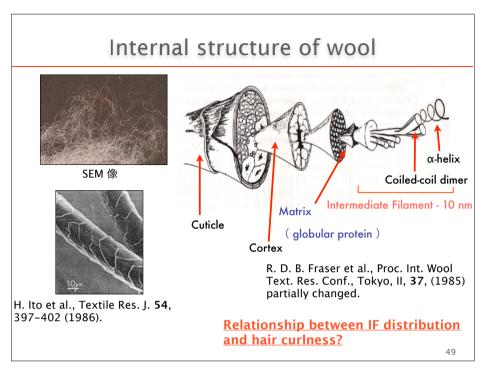
41

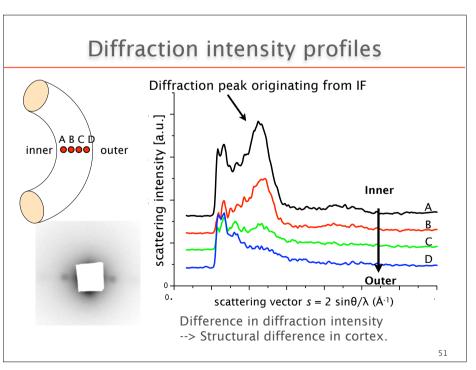
Slits for SAXS slit 1 slit 2 q2 sample

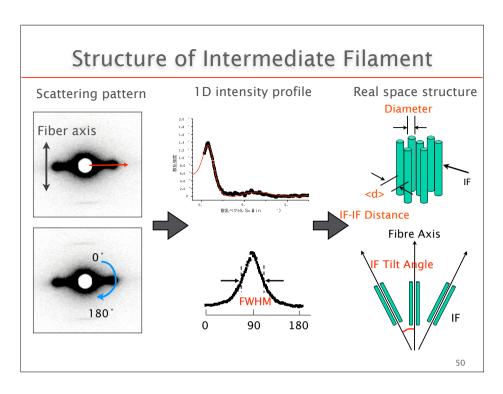

X-ray Optics for SAXS

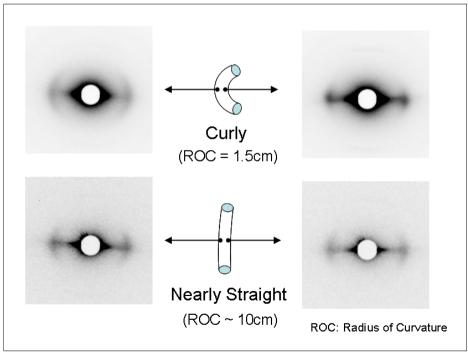
Detectors for SAXS

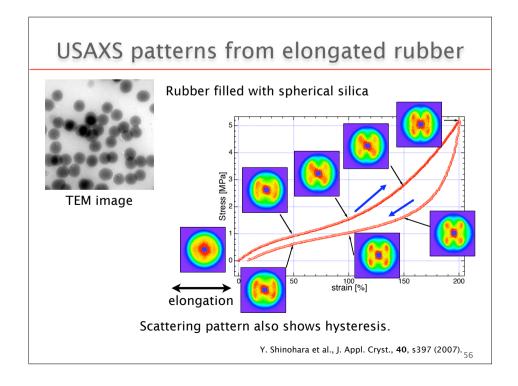

	Good Point	Drawback
PSPC	time-resolvedphoton-countinglow noise	· counting-rate limitation
Imaging Plate	· wide dynamic range · large active area	· slow read-out
CCD with Image Intensifier	• time-resolved • high sensitivity	· image distortion · low dynamic range
Fiber- tapered CCD	· fast read-out · automated measurement	· not good for time- resolved

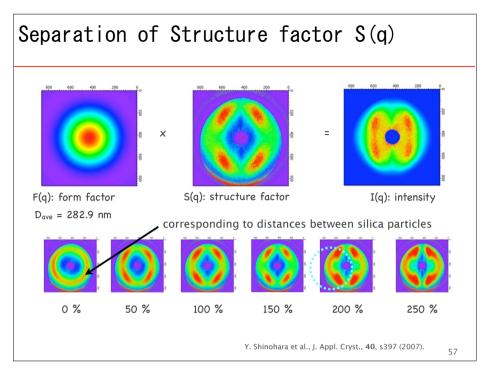

X-ray CCD detector with Image Intensifier Image Cooled Lens **CCD** Intensifier Cooling system Analog I/F Control Unit Readou 14 bit A/D RS-232C Phosphor screen CCD Thermoelectro RbCsSb (Zn, Cd)S:Ag cooler CsI:Na Digital I/F Gate High-voltage Pentium Pro Data power-supply 200MHz 256MB Memory acquisition IC-PCI included system 45

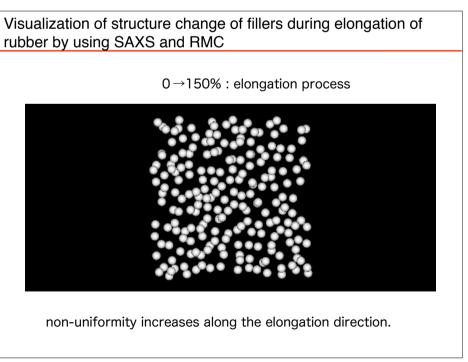


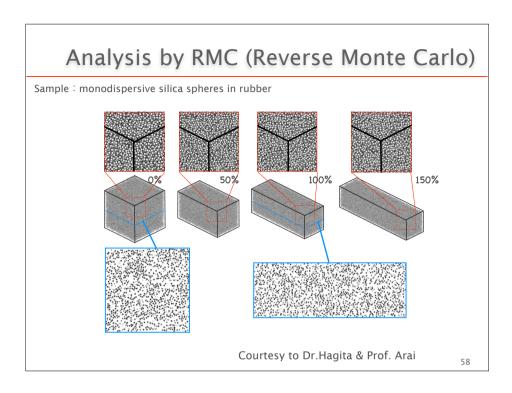

Table of Contents

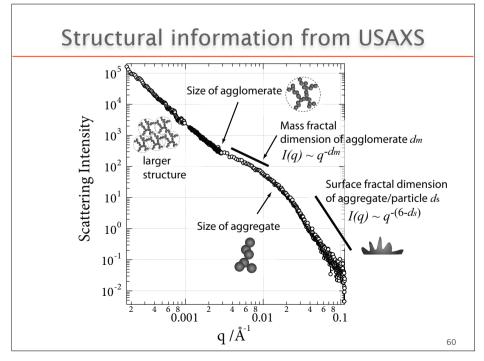

- Introduction
 - What's SAXS?
 - History
- ◆ Theory
 - Basic of X-ray scattering
 - Structural Information obtained by SAXS
- Experimental Methods
 - X-ray Optics
 - X-ray Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

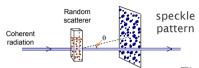

Distribution of Intermediate Filament (IF) Stained with Methylene blue dye Diameter or Distance (Å) 100.0000 Distance: <d> 90.0000 80.0000 70.0<mark>000</mark> (Optical microscope) 0.6 0.8 Outer side of Measuring_Position Inner side of Microfibril fiber curve fiber curve

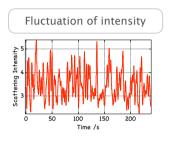

- Diameter of Intermediate filament (IF) is almost constant
- Distance between IFs increases from outer to inner sides.


USAXS using medium-length beamline

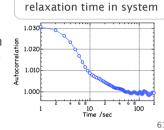


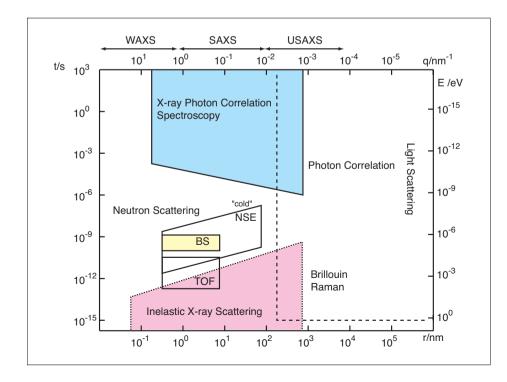

USAXS for nano-composite in rubber Nanocomposite Nanocomposite

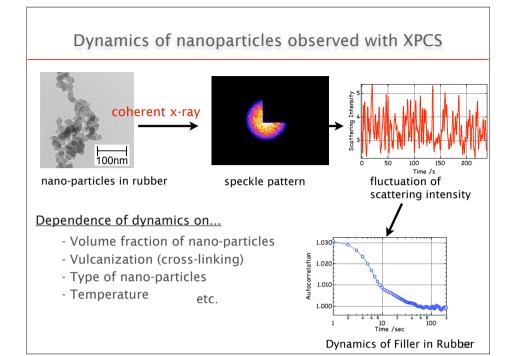



X-ray Photon Correlation Spectroscopy: XPCS

Measurement of fluctuation of X-ray scattering intensity --> Structural fluctuation in sample




 $g^{(2)}(q,\,\tau) = \frac{\langle I(q,0)I^*(q,\,\tau)\rangle}{\sigma}$


Time-resolved SAXS with coherent X-ray

Bibliography

- A. Guinier and A. Fournet (1955) "Small angle scattering of X-rays" Wiley & Sons, New York. out-of-print
- O. Glatter and O. Kratky ed. (1982) "Small Angle X-ray Scattering" Academic Press. London. out-of-print
- L. A. Feigin and D. A. Svergun (1987) "Structure Analysis by Small Angle X-ray and Neutron Scattering" Plenum Press.
- P. Lindner and Th. Zemb ed. (2002) "Neutron, X-ray and Light Scattering: Soft Condensed Matter", Elsevier.
- Proceedings of SAS meeting (2003 & 2006). Published in J. Appl. Cryst.
- R-I. Roe (2000) "Methods of X-ray and Neutron Scattering in Polymer Science", Oxford University Press.