

Brendan J. Kennedy School of Chemistry The University of Sydney

Uses of Powder Diffraction Qualitative Analysis Structure Refinement

Identification of single-phase materials Identification of multiple phases in microcrystalline mixtures Recognition of amorphous materials in partially crystalline mixtures

Quantitative Analysis

Lattice Parameter Determination Phase Fraction Analysis

Peak Shape Analysis

Crystallite Size Distribution Microstrain Analysis Extended Defect Concentration

Rietveld Method

Structure Solution

Reciprocal Space Methods Real Space Methods

Thermal expansion and Phase Transitions

Crystal

developed crystal faces

orientation in which they

Cleaves along preferred

· Properties depend on

directions

· Grows with well

Three Unique Features of Synchrotron Radiation Energy Range

Intensity

•Enables Rapid Data Collection

Kinetics Unstable Compounds

Environmental Cells

-Enables Focussing

Small Samples

-Speciation •Enables Optimal Conditions

-Environmental Cells -Selected Elements

Enables Spectroscopy

-Elemental Identification

-Bonding Studies

Small areas/volumes Low Divergence

- Enables High Resolution
- Micro Beams
- Small Volumes
- Complex Materials

What is special about a crystal?

Solid phases are often crystalline, but need not be e.g. glass an "amorphous material"

Glass

- Fractures into shards
- · Takes on any shape, depending on preparation
- · Properties do not varv with orientation.

Name Bravis Lattice Conditions $a \neq b \neq c$ Triclinic 1 (P) $\alpha \neq \beta \neq \gamma$ Monoclinic a ≠ b ≠ c 2 (P, C) $\alpha = \beta = 90^\circ \neq \gamma$ $a\neq b\neq c$ Orthorhombic 4 (P,F,I,A) $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$ Tetragonal 2 (P, I) $\alpha = \beta = \gamma = 90^{\circ}$ a = b = c3 (P, F,I) Cubic $\alpha=\beta=\gamma=90^\circ$ a = b = cTrigonal 1 (P) $\alpha = \beta = \gamma < 120^\circ \neq 90^\circ$ Lattice parameters: *a*, *b*, *c*; *α*, *β*, γ $a = b \neq c$ Hexagonal 1 (P) $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$ Ρ С F

always in phase

© 2003 Thomson - Brooks C

Resulting Interference Pattern

- The light from the two slits form a visible pattern on a screen
- The pattern consists of a series of bright and dark parallel bands called *fringes*
- *Constructive interference* occurs where a bright fringe occurs
- **Destructive interference** results in a dark fringe

Dark

area

Diffraction of X-ray Waves

• <u>Diffraction</u>: When light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands.

- By varying the angle θ, the Bragg's Law conditions are satisfied by different d-spacings in polycrystalline materials.
- Plotting the angular positions and intensities of the resultant diffracted peaks produces a pattern which is characteristic of the sample.

Centering and Absences• We can extend these types of calculation
to include other modes of lattice centering.
They all lead to systematic absencesBravais latticeReflections that must
be absentSimple (Primitive)noneBase (C) centeredh and k mixedBody (I) centered(h+k+I) oddFace (F) centeredh, k and I mixed

$$y_{icalc} = y_{iback} + \sum_{p} \sum_{k=k_1^p}^{n_2} G_{ik}^p I_k^2$$

- y_{ic} the net intensity calculated at point i in the pattern,
- y_{iback} is the background intensity,
- G_{ik} is a normalised peak profile function,
- I_k is the intensity of the kth Bragg reflection,
- k₁ ... k₂ are the reflections contributing intensity to point i,
- the superscript p corresponds to the possible phases present in the sample.

An Example
Synchrotron X-ray Diffraction pattern for SrRuO₃

Experiment Design Issues

What Wavelength?

- Absorption is your enemy!
- Short Wavelengths are best! BUT
- Consider required resolution. And...
- Avoid Absorption Edges.

What Size Capillary?

- Small capillaries reduce absorption AND (with area detectors) improve resolution.
- BUT reduce amount of material.